Магноны впервые наблюдали «вживую»: почему это важно и как ученые добились этого В ходе нового исследования физики впервые увидели магноны с помощью простого оптического эффекта. Это произошло впервые. «Хайтек» рассказывает главное о новом исследовании. Все магниты — от сувениров на холодильнике и компьютерных дисков до мощных, которые используются в исследовательских лабораториях, — содержат вращающиеся квазичастицы, называемые магнонами. Почему движение магнонов так важно? Направление вращения одного магнона может влиять на то же движение его соседа, потом на другую частицу и так далее. Этот процесс создает спиновые волны. Потенциально информация может передаваться с помощью спиновых волн более эффективно, чем с помощью электричества. Сами магноны могут служить для квантовых межсоединений, которые «склеивают» квантовые биты вместе в мощные компьютеры. В чем проблема? Магноны обладают огромным потенциалом, но их часто трудно обнаружить без громоздкого лабораторного оборудования. Такие установки подходят для проведения экспериментов, но не для разработки устройств — например, магнонных устройств и спинтроники. Однако наблюдение магнонов можно упростить с помощью подходящего материала. Например, магнитного полупроводника — бромистого сульфида хрома (CrSBr). Его можно разделить на атомарно-тонкие двумерные слои, синтезированные в лаборатории. Есть решение В ходе нового исследования сотрудники из Колумбийского, Вашингтонского и Нью-Йоркского университетов, а также Окриджской национальной лаборатории показали, что в CrSBr магноны могут образовывать пары с другой квазичастицей — экситоном. Ее особенность в том, что она излучает свет, а, значит, физики смогут «видеть» вращающуюся квазичастицу. Что сделали ученые? Возмущая магноны светом, они наблюдали колебания от экситонов в ближнем инфракрасном диапазоне, почти видимом невооруженным глазом. Иными словами, впервые ученые наблюдали магноны с помощью простого оптического эффекта. Результаты можно рассматривать как квантовую трансдукцию или преобразование одного кванта энергии в другой. Энергия экситонов на четыре порядка больше энергии магнонов. Теперь, поскольку они соединяются, можно легко наблюдать крошечные изменения в магнонах. Однажды трансдукция позволит инженерам построить квантовые информационные сети (они получают информацию из квантовых битов, основанных на вращении). Обычно сети должны располагаться в пределах миллиметров друг от друга и преобразовывать ее в свет — форму энергии, которая может передавать информацию на сотни километров по оптоволокну. По словам ученых, в ходе эксперимента отметили время когерентности — то, как долго могут длиться колебания. Так, оно длилось намного дольше, чем планируемый пятинаносекундный предел эксперимента. Явление может распространяться на семь микрометров и сохраняться, даже если устройства CrSBr состоят всего из двух слоев толщиной в атом. К чему это приведет? Все это упрощает разработку наноразмерных устройств спинтроники. Однажды они станут эффективной альтернативой современной электронике. В отличие от электронов в электрическом токе, которые встречают сопротивление при движении, в спиновой волне, на самом деле, никакие частицы не движутся. Что дальше? В дальнейшем исследователи изучат квантовый информационный потенциал CrSBr, а также у других материалов-кандидатов. Например, ученые могут найти магнон-экситонную связь в других видах магнитных полупроводников с несколько иными свойствами, чем у CrSBr. В итоге материалы смогут излучать свет в более широком диапазоне цветов. Исследование опубликовано в научном журнале nature^ журнале https://www.nature.com/articles/s41586-022-05024-1 Русскоязычная версия взята из источника: https://hightech.fm/2022/09/12/scientists-magnet

Теги других блогов: физика магноны спиновые волны